255 research outputs found

    Lower-order compensation chain threshold-reduction technique for multi-stage voltage multipliers

    Get PDF
    This paper presents a novel threshold-compensation technique for multi-stage voltage multipliers employed in low power applications such as passive and autonomous wireless sensing nodes (WSNs) powered by energy harvesters. The proposed threshold-reduction technique enables a topological design methodology which, through an optimum control of the trade-off among transistor conductivity and leakage losses, is aimed at maximizing the voltage conversion efficiency (VCE) for a given ac input signal and physical chip area occupation. The conducted simulations positively assert the validity of the proposed design methodology, emphasizing the exploitable design space yielded by the transistor connection scheme in the voltage multiplier chain. An experimental validation and comparison of threshold-compensation techniques was performed, adopting 2N5247 N-channel junction field effect transistors (JFETs) for the realization of the voltage multiplier prototypes. The attained measurements clearly support the effectiveness of the proposed threshold-reduction approach, which can significantly reduce the chip area occupation for a given target output performance and ac input signal

    Sound transmission loss of windows on high speed trains

    No full text
    The window is one of the main components of the high speed train car body structure through which noise can be transmitted. To study the windows’ acoustic properties, the vibration of one window of a high speed train has been measured for a running speed of 250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been measured simultaneously. The experimental results show that the window vibration velocity has a similar spectral shape to the interior noise. Interior noise source identification further indicates that the window makes a contribution to the interior noise. Improvement of the window’s Sound Transmission Loss (STL) can reduce the interior noise from this transmission path. An STL model of the window is built based on wave propagation and modal superposition methods. From the theoretical results, the window’s STL property is studied and several factors affecting it are investigated, which provide indications for future low noise design of high speed train windows

    Determination of incommensurate modulated structure in Bi2Sr1.6La0.4CuO6+{\delta} by aberration-corrected transmission electron microscopy

    Full text link
    Incommensurate modulated structure (IMS) in Bi2Sr1.6La0.4CuO6+{\delta} (BSLCO) has been studied by aberration corrected transmission electron microscopy in combination with high-dimensional (HD) space description. Two images in the negative Cs imaging (NCSI) and passive Cs imaging (PCSI) modes were deconvoluted, respectively. Similar results as to IMS have been obtained from two corresponding projected potential maps (PPMs), but meanwhile the size of dots representing atoms in the NCSI PPM is found to be smaller than that in PCSI one. Considering that size is one of influencing factors of precision, modulation functions for all unoverlapped atoms in BSLCO were determined based on the PPM obtained from the NCSI image in combination with HD space description

    Synthesis and characterization of a bimetallic iridium complex with a ten sp(2)-carbon chain bridge

    Get PDF
    A special sp(2)-carbon chain bridged bimetallic iridium complex has been synthesized and characterized; the compound has excellent air-stability, thermo-stability and electrochemical properties

    Whole Genome Distribution and Ethnic Differentiation of Copy Number Variation in Caucasian and Asian Populations

    Get PDF
    Although copy number variation (CNV) has recently received much attention as a form of structure variation within the human genome, knowledge is still inadequate on fundamental CNV characteristics such as occurrence rate, genomic distribution and ethnic differentiation. In the present study, we used the Affymetrix GeneChip® Mapping 500K Array to discover and characterize CNVs in the human genome and to study ethnic differences of CNVs between Caucasians and Asians. Three thousand and nineteen CNVs, including 2381 CNVs in autosomes and 638 CNVs in X chromosome, from 985 Caucasian and 692 Asian individuals were identified, with a mean length of 296 kb. Among these CNVs, 190 had frequencies greater than 1% in at least one ethnic group, and 109 showed significant ethnic differences in frequencies (p<0.01). After merging overlapping CNVs, 1135 copy number variation regions (CNVRs), covering approximately 439 Mb (14.3%) of the human genome, were obtained. Our findings of ethnic differentiation of CNVs, along with the newly constructed CNV genomic map, extend our knowledge on the structural variation in the human genome and may furnish a basis for understanding the genomic differentiation of complex traits across ethnic groups

    Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery

    Get PDF
    The Shigella bacteria cause bacillary dysentery, which remains a significant threat to public health. The genus status and species classification appear no longer valid, as compelling evidence indicates that Shigella, as well as enteroinvasive Escherichia coli, are derived from multiple origins of E.coli and form a single pathovar. Nevertheless, Shigella dysenteriae serotype 1 causes deadly epidemics but Shigella boydii is restricted to the Indian subcontinent, while Shigella flexneri and Shigella sonnei are prevalent in developing and developed countries respectively. To begin to explain these distinctive epidemiological and pathological features at the genome level, we have carried out comparative genomics on four representative strains. Each of the Shigella genomes includes a virulence plasmid that encodes conserved primary virulence determinants. The Shigella chromosomes share most of their genes with that of E.coli K12 strain MG1655, but each has over 200 pseudogenes, 300∼700 copies of insertion sequence (IS) elements, and numerous deletions, insertions, translocations and inversions. There is extensive diversity of putative virulence genes, mostly acquired via bacteriophage-mediated lateral gene transfer. Hence, via convergent evolution involving gain and loss of functions, through bacteriophage-mediated gene acquisition, IS-mediated DNA rearrangements and formation of pseudogenes, the Shigella spp. became highly specific human pathogens with variable epidemiological and pathological features

    Multicolor Combinatorial Probe Coding for Real-Time PCR

    Get PDF
    The target volume of multiplex real-time PCR assays is limited by the number of fluorescent dyes available and the number of fluorescence acquisition channels present in the PCR instrument. We hereby explored a probe labeling strategy that significantly increased the target volume of real-time PCR detection in one reaction. The labeling paradigm, termed “Multicolor Combinatorial Probe Coding” (MCPC), uses a limited number (n) of differently colored fluorophores in various combinations to label each probe, enabling one of 2n-1 genetic targets to be detected in one reaction. The proof-of-principle of MCPC was validated by identification of one of each possible 15 human papillomavirus types, which is the maximum target number theoretically detectable by MCPC with a 4-color channel instrument, in one reaction. MCPC was then improved from a one-primer-pair setting to a multiple-primer-pair format through Homo-Tag Assisted Non-Dimer (HAND) system to allow multiple primer pairs to be included in one reaction. This improvement was demonstrated via identification of one of the possible 10 foodborne pathogen candidates with 10 pairs of primers included in one reaction, which had limit of detection equivalent to the uniplex PCR. MCPC was further explored in detecting combined genotypes of five β-globin gene mutations where multiple targets were co-amplified. MCPC strategy could expand the scope of real-time PCR assays in applications which are unachievable by current labeling strategy

    Global Epidemiology of Dengue Outbreaks in 1990–2015: A Systematic Review and Meta-Analysis

    Get PDF
    Dengue is an arthropod-borne infectious disease caused by dengue virus (DENV) infection and transmitted by Aedes mosquitoes. Approximately 50–100 million people are infected with DENV each year, resulting in a high economic burden on both governments and individuals. Here, we conducted a systematic review and meta-analysis to summarize information regarding the epidemiology, clinical characteristics, and serotype distribution and risk factors for global dengue outbreaks occurring from 1990 to 2015. We searched the PubMed, Embase and Web of Science databases through December 2016 using the term “dengue outbreak.” In total, 3,853 studies were identified, of which 243 studies describing 262 dengue outbreaks met our inclusion criteria. The majority of outbreak-associated dengue cases were reported in the Western Pacific Region, particularly after the year 2010; these cases were primarily identified in China, Singapore and Malaysia. The pooled mean age of dengue-infected individuals was 30.1 years; of the included patients, 54.5% were male, 23.2% had DHF, 62.0% had secondary infections, and 1.3% died. The mean age of dengue patients reported after 2010 was older than that of patients reported before 2010 (34.0 vs. 27.2 years); however, the proportions of patients who had DHF, had secondary infections and died significantly decreased after 2010. Fever, malaise, headache, and asthenia were the most frequently reported clinical symptoms and signs among dengue patients. In addition, among the identified clinical symptoms and signs, positive tourniquet test (OR = 4.86), ascites (OR = 13.91) and shock (OR = 308.09) were identified as the best predictors of dengue infection, DHF and mortality, respectively (both P &lt; 0.05). The main risk factors for dengue infection, DHF and mortality were living with uncovered water container (OR = 1.65), suffering from hypotension (OR = 6.18) and suffering from diabetes mellitus (OR = 2.53), respectively (all P &lt; 0.05). The serotype distribution varied with time and across WHO regions. Overall, co-infections were reported in 47.7% of the evaluated outbreaks, and the highest pooled mortality rate (2.0%) was identified in DENV-2 dominated outbreaks. Our study emphasizes the necessity of implementing programs focused on targeted prevention, early identification, and effective treatment

    Association Analysis of NLRP3 Inflammation-Related Gene Promotor Methylation as Well as Mediating Effects on T2DM and Vascular Complications in a Southern Han Chinese Population

    Get PDF
    Objective: To explore the association between the methylation levels in the promoter regions of the NLRP3, AIM2, and ASC genes and T2DM and its vascular complications in a Southern Han Chinese population and further analyze their interaction and mediating effects with environmental factors in T2DM.Methods: A case-control study was used to determine the association between population characteristics, the methylation level in the promoter region of the NLRP3, AIM2, and ASC genes and T2DM and vascular complications. A mediating effect among genes-environment-T2DM and the interaction of gene-gene or gene-environment factors was explored.Results: In the logistic regression model with adjusted covariants, healthy people with lower total methylation levels in the AIM2 promoter region exhibited a 2.29-fold [OR: 2.29 (1.28~6.66), P = 0.011] increased risk of developing T2DM compared with higher-methylation individuals. T2DM patients without any vascular complications who had lower methylation levels (&lt;methylation median) in NLRP3 CpG2 and AIM2 total methylation had 6.45 (OR: 6.45, 95% CI: 1.05~39.78, P = 0.011) and 9.48 (OR: 9.48, 95% CI: 1.14~79.00, P = 0.038) times higher risks, respectively, of developing diabetic microvascular complications than T2DM patients with higher methylation. Similar associations were also found between the lower total methylation of the NLRP3 and AIM2 promoter regions and macrovascular complication risk (NLRP3 OR: 36.03, 95% CI: 3.11~417.06, P = 0.004; AIM2 OR: 30.90, 95% CI: 2.59~368.49, P = 0.007). Lower NLRP3 promoter total methylation was related to a 17.78-fold increased risk of micro-macrovascular complications (OR: 17.78, 95% CI: 2.04~155.28, P = 0.009). Lower ASC CpG1 or CpG3 methylation levels had significant partial mediating effects on T2DM vascular complications caused by higher age (ASC CpG1 explained approximately 52.8% or 32.9% of the mediating effect of age on macrovascular or macro-microvascular complications; ASC CpG3 explained approximately 38.9% of the mediating effect of age on macrovascular complications). No gene-gene or gene-environment interaction was identified in T2DM.Conclusion: Lower levels of AIM2 promoter total methylation might increase the risk of T2DM. NLRP3, AIM2, and ASC promoter total methylation or some CpG methylation loss might increase the risk of T2DM vascular complications, which merits further study to support the robustness of these findings
    corecore